Hüllkurvenbildung hilft Lagerschäden zu vermeiden

Richtig hinhören

Um einen Lagerschaden frühzeitig zu erkennen, ist eine hochentwickelte Signalverarbeitung notwendig. Ein erfahrener Instandhalter kann oft am Geräusch feststellen, ob sich eine Maschine ´richtig anhört. Um den genauen Grund des Problems zu identifizieren, kann das gleiche Prinzip - mithilfe modernster Elektronik - angewandt werden.
Bei der Überwachung von Getrieben ist die Auswahl des richtigen Sensors maßgebend für die Güte der Messdatenerfassung und Auswertung.
Bei der Überwachung von Getrieben ist die Auswahl des richtigen Sensors maßgebend für die Güte der Messdatenerfassung und Auswertung.

Sensoren können die Vibrationen von industriellen Anlageteilen aufnehmen und Probleme wie Achsverschiebungen oder Lagerunwuchten darstellen. Dieses Verfahren nennt man Schwingungsanalyse. Es kann Lagerdefekte in einem frühen Stadium erkennen, z.B. wenn sich ein mikroskopisch-kleiner Defekt auf dem Lagerlaufring befindet. Die Herausforderung besteht darin, das zu ermittelnde Signal von den anderen auftretenden Maschinengeräuschen zu differenzieren.

Die Vorbereitung der Sensormontagefläche ist maßgebend für die Güte der gewonnenen Daten. Werkzeuge wie der Planfräser helfen bei der Oberflächenvorbereitung im Feld.
Die Vorbereitung der Sensormontagefläche ist maßgebend für die Güte der gewonnenen Daten. Werkzeuge wie der Planfräser helfen bei der Oberflächenvorbereitung im Feld.

Filterung

Für den Maschinenzustand ist es wichtig, Defekte so früh als möglich zu erkennen, da andernfalls Maschinenausfälle und Stillstände drohen. Eine Methode, das relevante Signal vom Rauschen zu trennen, ist ein signalverarbeitendes Verfahren, das sich Hüllkurvenbildung nennt. Bei diesem Verfahren werden die ungewollten Anteile des Vibrationsspektrums stufenweise herausgefiltert, bis das Signal des Lagerdefektes klar erkennbar ist, d.h. die sich wiederholenden niederenergetischen Schwingungen werden von den Umgebungsgeräuschen extrahiert. Der ungefilterte Schwingungsverlauf eines Lagerschadens ist eine Mischung aus hohen und tiefen Frequenzen ohne offensichtliches Muster. Der erste Schritt besteht darin, einen Bandpassfilter anzuwenden, der die Frequenzen, in denen sich das gesuchte Signal verbirgt, isoliert. Erfahrungswerte sind notwendig, um zu wissen, welche Hoch- und Tiefpassfrequenzen eliminiert werden müssen. In der gefilterten Datenausgabe können sich wiederholende hochfrequente Signale bereits identifiziert werden, dennoch sind für die spezifische Bestimmung eines Lagerschadens weitere Schritte erforderlich. Nach dem Bandpassfilter wird der Schwingungsverlauf entzerrt, dazu werden die negativen Halbwellen invertiert und die Spitzenwerte der positiven und invertierten Halbwelle mit einer Linie (Hüllkurve) verbunden. Die Hüllkurve wird nun als echtes Schwingungssignal verarbeitet und hebt sich von dem Rauschen ab. Sie verhilft, ein regelmäßig wiederkehrendes Signal zu erfassen, wie es z.B. ein einzelner Schaden auf einem Laufring erzeugen würde. Andere Geräuschquellen, wie das Reiben einer Welle, sind eher zufällig und emittieren daher keine regelmäßigen Spitzen.

Hüllkurvenbildung

Die Hüllkurvenbildung wird hauptsächlich bei Wälzlagersystemen genutzt, findet aber auch in der Elektromotor- und Getriebeüberwachung Anwendung. Sie ist der Schlüsselfaktor zum Erfolg von zustandsorientierten Instandhaltungsprogrammen. Auch wenn die Hüllkurvenberechnung hauptsächlich bei Signalen im Beschleunigungsspektrum benutzt wird, kann sie auch zur Verbesserung anderer Messungen wie beispielsweise der Stoßimpulsmessung angewandt werden. Sobald das Signal gefiltert wurde, können die Informationen des Beschleunigungssensors von einem Datensammler abgegriffen und von Spezialisten begutachtet werden. Dem Messtechniker obliegt dann die Entscheidung, ob notwendige Instandsetzungsmaßnahmen umgesetzt werden müssen oder der Weiterbetrieb bis zur nächsten Messung möglich ist. Auch wenn die Hüllkurvenberechnung die klare Lösung zur Erfassung von Lagerschäden zu sein scheint, kann sie nicht bei jeder Maschine verwendet werden. Das Verfahren erfasst Schäden, die repetitive Metall-auf-Metall Interaktionen bewirken. Alle Bauteile, die das Signal ausblenden könnten, wie Dichtungen oder Dämpfer, kann die Maschine außerhalb des Verwendungsbereiches der beschriebenen Methode setzen.

Erfolgsfaktoren

Wenn eine Anwendung für die Hüllkurvenberechnung geeignet ist, kann die Optimierung einiger Faktoren bessere Messergebnisse gewährleisten. Sensoren, die niederfrequente Signale aufnehmen sollen, müssen im richtigen Frequenzbereich gewählt werden um den Anforderungen der entsprechenden Maschine oder Applikation zu entsprechen. Auch die korrekte Montage der Sensoren ist essenziell, die Anbringung erfolgt im Idealfall direkt an der Maschine auf einer nicht-lackierten, glatten, sauberen Oberfläche, um gleichbleibende Resultate zu erreichen. Eine schlechte Befestigung vermindert die Verlässlichkeit und kann die gesammelten Daten unbrauchbar machen. Nachdem die Sensoren installiert und kalibriert wurden, sollten die Daten in regelmäßigen Abständen ausgelesen werden, um eine akkurate Trendanalyse zu ermöglichen. Dadurch kann ein sich stetig verschlechternder Zustand – auch über lange Zeiträume hinweg – erkennbar werden. Dennoch muss bedacht werden, dass die Schwingungsanalyse keine deutliche Ja/Nein-Antwort liefert; es bedarf Erfahrung zur Interpretation der Daten. Die Amplitude eines sich verschlechternden Zustandes kann z.B. rückläufig sein, wenn sich die schadhafte Stelle mit der Zeit glättet. Das Potential der Hüllkurvenbildung ist enorm, dennoch wäre es wenig weitsichtig sich allein auf dieses Verfahren zu verlassen. Die Methode als Teil eines größeren Monitoring- und Analysesystems umzusetzen ist effektiver und hilft die Verfügbarkeit und Produktivität von Anlagen zu gewährleisten.

Seiten: 1 2Auf einer Seite lesen

Hansford Sensors GmbH
http://www.hansfordsensors.com

Das könnte Sie auch Interessieren

Weitere Beiträge

M12 in Edelstahlausführung

Sowohl die Prozesstechnik als auch die Lebensmittelindustrie und der einschlägige Maschinenbau fordern eine hohe Widerstandsfähigkeit der eingesetzten Komponenten und ihrer Materialien.

mehr lesen