LinkedIn Logo YouTube Logo
Unterschied von Maisart und MaiLab

„Automatische Diagnose von Live-Daten“

Mit Maisart verfügt Mitsubishi Electric schon seit vielen Jahren über eine KI-Lösung. In welchem Verhältnis dazu steht das neu vorgestellte MaiLab?

Jonas Roski: Maisart und MaiLab haben unterschiedliche Schwerpunkte und Anwendungen. Maisart ermöglicht schon seit einigen Jahren die Einbindung von KI in die Produktion und wird bisher in Automatisierungskomponenten und Software zur vorausschauenden Wartung verwendet. Diese Algorithmen sind bereits vordefiniert und sind nicht dazu gedacht, angepasst und verändert zu werden. Die Verwendung von Maisart für spezielle Anwendungen wie die Qualitätskontrolle ist also nicht möglich. Genau hierfür wurde die MaiLab-Software entwickelt. Sie basiert zwar auch auf Maisart, es ist jedoch möglich, Datenmodelle für verschiedene Anwendungen aus selbst erzeugten Daten zu generieren. Die Besonderheit ist, dass dies komplett automatisch passiert. In nur wenigen Minuten ist es möglich durch KI eine Vorhersage zu liefern, die sich auf die erzeugten Eingangsdaten bezieht. Kurz gesagt, ist es mit MaiLab möglich die Algorithmen der Maisart-KI selbst in die Hand zu nehmen,

Wie funktioniert MaiLab?

MaiLab ist keine typische Programmiersoftware und sehr intuitiv und übersichtlich aufgebaut. Der Ablauf eines Projekts ist immer gleich. Als erstes müssen die zu analysierenden Daten importiert werden. Dann kann ein Datenmodell erzeugt werden, das einen vom Benutzer definierten Zweck erfüllt – etwa die Erkennung von Fehlern im Prozess oder die Abschätzung der Qualität eines Prozesses. Dabei ist es egal, ob die Daten vorab als gut oder schlecht bewertet wurden, ob es Datenlücken oder -rauschen gibt. Denn an dieser Stelle kommt die KI ins Spiel. Die Maisart-Mechanismen analysieren die Daten in Bezug auf ihr Ziel. MaiLab erzeugt vollautomatisch ein Datenmodell und gibt auch an, wie genau dieses ist. Der Anwender muss die Algorithmen weder verstehen noch konfigurieren. Erfahrene Datenanalysten können dennoch die Algorithmen manuell anpassen oder komplett selbst erstellen. Durch die Integration von Python ist es auch möglich, Daten manuell zu verarbeiten. Ein von MaiLab erzeugtes Modell kann schlussendlich in einem Task integriert werden, um eine automatische Diagnose von Live-Daten zu erhalten.

Das könnte Sie auch Interessieren

Weitere Beiträge

Bild: Siemens AG
Bild: Siemens AG
Das kann die virtuelle Simatic S7-1500V

Das kann die virtuelle Simatic S7-1500V

Die neue virtuelle SPS Simatic S7-1500V von Siemens basiert in Funktion und Bedienung auf dem weit verbreiteten Hardware-Pendant, ist als rein digitale Lösung aber Hardware-unabhängig einsetzbar. Sie wird als Edge-App heruntergeladen und direkt in die IT-Umgebung integriert. Der Automobilbauer Audi sieht hier riesiges Potenzial für seine Produktionslinien und begleitet das Siemens-Projekt der virtuellen SPS als Pilotanwender von Beginn an.

mehr lesen
Bild: Sigmatek GmbH & Co KG
Bild: Sigmatek GmbH & Co KG
Standard oder 
Kundenspezifisch?

Standard oder Kundenspezifisch?

Sigmatek bietet längst ein breites Standardportfolio für die Automatisierung an. „Die Anfänge des Unternehmens liegen allerdings in kundenspezifischen Lösungen“, betont Alexander Melkus. Der Geschäftsführer erklärt im Gespräch mit dem SPS-MAGAZIN, warum diese auch heute noch ein wichtiger Teil der Signatur von Sigmatek sind, und wie es pünktlich zur SPS 2024 gelungen ist, beide Stoßrichtungen – Standard und kundenspezifisch – in einem Produkt zu vereinen.

mehr lesen
Bild: Kontron Europe GmbH
Bild: Kontron Europe GmbH
Intels 13. Generation ermöglicht Industrierechner Performance-Weitsprung

Intels 13. Generation ermöglicht Industrierechner Performance-Weitsprung

Industrie-PCs und Steuerrechner sowie Prozessorboards oder Module müssen stark wachsende Datenmengen handhaben und verarbeiten können. Kontron stattet Single Board Computer und Computer-on-Modules sowie IPCs mit Intel-Core-Prozessoren und Mobil-Prozessoren der 13. Generation aus. Damit können Hersteller von Geräten, Maschinen und Anlagen deren Nutzbarkeit angesichts steigender Anforderungen über einen langen Zeitraum erfüllen.

mehr lesen