Moderne SPS-Echtzeitprogrammierung

Rust als Alternative zur IEC61131?

Die Programmierung von Anlagen und Maschinen erfolgt klassisch mit SPSen auf Basis der Norm IEC61131, deren Ursprung auf die 90er-Jahre zurück geht. Doch in den letzten 30 Jahren hat sich die Softwareentwicklung stark verändert, was sich auch in den Programmiersprachen niederschlägt. Dieser Artikel geht den Fragen nach, warum es sich lohnt, die klassische SPS-Programmierung zu überdenken, und warum ausgerechnet die Sprache Rust als Basisbaustein dienen soll.
 Codebeispiel mit Kompilierfehler des Borrow-Systems
Codebeispiel mit Kompilierfehler des Borrow-SystemsBild: Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen (ISW)

Warum erfolgt die die Programmierung von Anlagen überhaupt mit SPSen? Eine Kernanforderung ist die Echtzeitanforderung an das Steuerungsprogramm. Hierfür muss das Laufzeitsystem, die Programmierung und die integrierte Entwicklungsumgebung (IDE) ausreichende Unterstützung bieten. Dazu gehört ein echtzeitfähiges Laufzeitsystem, das in der IDE konfiguriert werden kann. Außerdem gibt es modellgetriebene Programmieransätze mit Kontaktplan oder Ablaufsprache, um einfacheren Code für spezialisierte Problemstellungen zu erstellen. Weiterhin ist die Kommunikation über Feldbus mit den I/Os notwendig. Sie muss ebenfalls durch das Programmiersystem unkompliziert konfigurierbar sein. Darüber hinaus muss sich die SPS in eine heterogene IT- und OT-Landschaft einbinden lassen, die Integration und Kommunikation von nicht echtzeitkritischer Software muss also auch einfach möglich sein.

Was ist Rust?

Rust ist eine kompilierte Sprache ohne Garbage Collection, was sie für die Echtzeitprogrammierung geeignet macht. Denn bei der Garbage Collection wird der Speicher im Hintergrund automatisiert verwaltet, was zu Latenzschwankungen führen kann und die Echtzeit negativ beeinflusst. Das Besondere an Rust ist die Speicherverwaltung. Ohne Garbage Collector ist eine manuelle Speicherverwaltung notwendig, was bei C/C++ eine Hauptursache für Bugs und Sicherheitslücken ist. Rust setzt hier auf ein Ownership- und Borrowing-System, wodurch die Lebensdauer von Speicher und Speicherreferenzen bereits zur Kompilierzeit überprüft werden kann. Damit wird der Compiler zu einem mächtigen Werkzeug bei der Softwareentwicklung. Im abgebildeten Code-Beispiel wird durch die Übergabe des Vektors v an die Funktion print_vec die Zugehörigkeit an die Funktion gegeben. Der Nachfolgende push Aufruf führt daher zu einem „borrow of move value“. Neben der Speichersicherheit gehören auch Nebenläufigkeitsprüfungen zur Kompilierzeit oder die Überprüfung der Fehlerbehandlung zum Repertoire von Rust, was die Stabilität der Software erhöht. Die Anzahl der Laufzeitfehler in Rust-Programmen ist geringer im Vergleich zu C/C++, da der Compiler viele Fehler abfängt und den Programmierer zu sauberen Lösungen zwingt. Darüber hinaus bietet Rust die Vorteile von modernen Programmiersprachen, wie Buildsystem, Paketmanager, einfache Testintegration und IDE-Integration.

Lohnt sich Rust?

Auch die klassischen Sprachen der IEC61131-3 sind von einer unsicheren Speicherverwaltung bei der Verwendung von Speicherreferenzen betroffen und bieten damit eine Angriffsfläche für potentielle Laufzeitfehler und Sicherheitslücken. Diesen Herausforderungen kann durch Standards wie Misra begegnet werden oder mit Softwareentwicklungsprozessen, wie sie die Automobilindustrie einsetzt. Die Hürde für den Einsatz ist jedoch deutlich höher, als wenn die Programmiersprache selbst Speichersicherheit bereits mitbringt. Der Einzug von Rust in den Linux-Kernel 6.1 zeigt, welches Potenzial in der Sprache gesehen wird. Auch Microsoft ist gerade dabei Rust in den Windows-Kernel zu integrieren. Erfahrungen mit Rust bestätigen diesen Eindruck: Es lässt sich im Vergleich zu C/C++ tatsächlich schneller stabile Software schreiben. Gerade in der Automatisierungstechnik scheint sich der Einsatz zu lohnen. Ein Nachteil muss jedoch erwähnt werden, der Einstieg in Rust stellt eine hohe Hürde dar: Die Konzepte müssen erst verstanden und verinnerlicht werden, bevor sie effektiv genutzt werden können und der Compiler zufrieden ist.

Wie sieht die SPS-Programmierung aus?

Für eine Architektur für den Einsatz von Rust in der SPS werden zunächst ein echtzeitfähiges Laufzeitsystem und eine Feldbusanbindung benötigt. Das Laufzeitsystem abstrahiert dabei die Erstellung und Konfiguration von zyklischen oder Ereignis-basierten Echtzeit-Tasks, so dass sich der Anwender nicht selbst um deren Verwaltung kümmern muss. Die Feldbusanbindung ist an das Laufzeitsystem gekoppelt, so dass hier mittels Konfigurationsdaten die Feldbusse gestartet werden können. Die Feldbuskonfiguration erfolgt in einem separaten Tool, das in das Engineering integriert werden kann. Mit der Feldbuskonfiguration können mit Hilfe der Makrofunktionalität von Rust die Zugriffsmethoden zur Kompilierzeit für die Prozessdaten automatisch generiert werden.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Weitere Beiträge

Bild: Wölfel Engineering
Bild: Wölfel Engineering
Mit Beckhoff-IPC und integrierter Messtechnik zur individuellen Zustandsüberwachung

Mit Beckhoff-IPC und integrierter Messtechnik zur individuellen Zustandsüberwachung

Deutlich erhöhte Schwingungen an Maschinen können in vielerlei Hinsicht negative Folgen haben, von einer reduzierten Anlagenleistung bis hin zu Schäden an Maschine und Fundament. Durch Condition Monitoring können solche Schwingungsprobleme frühzeitig erkannt sowie Wartungsintervalle angepasst werden. Mit integrierter Messtechnik hat Wölfel Engineering auf diese Weise das Retrofit einer Schmiedepresse mit 2.000t Presskraft umgesetzt.

mehr lesen
Bild: Siemens AG
Bild: Siemens AG
Vision-Integration per App

Vision-Integration per App

Qualitätskontrolle ist in der modernen Industrie von entscheidender Bedeutung. Mit Machine Vision wird sie weniger fehleranfällig, zeitaufwändig und kostspielig. Durch die Aufnahme von zwei Anbietern der industriellen Bildverarbeitung in das Siemens-Industrial-Edge-Ökosystem können neue skalierbare Bildverarbeitungslösungen effizient und nahtlos in die Produktionsautomatisierung integriert werden.

mehr lesen