LinkedIn Logo YouTube Logo
ANZEIGE
Mehr Produktivität mit KI

„Technologie allein kann keine Probleme lösen“

Im dima Interview berichtet Stefan Bergstein, Principal Chief Architect bei Red Hat, über den Einsatz von künstlicher Intelligenz in Fertigungsbetrieben.
Bild: Red Hat GmbH

Inwiefern trägt KI zu mehr Produktivität in der Fertigung bei?

Stefan Bergstein: KI-basierte Zustandsüberwachung und visuelle Qualitätsprüfung in Echtzeit gehören zu den wichtigsten Anwendungsfällen, um die Produktivität in der Fertigung zu steigern. Oberstes Ziel ist es, die höchstmögliche Produktqualität zu erhalten und gleichzeitig die Produktion fehlerhafter Artikel zu minimieren oder sogar ganz zu eliminieren. Die frühestmögliche Erkennung von Qualitätsproblemen stellt sicher, dass die Fertigungsprozesse stets eine maximale Produktivität erreichen. Ebenso wichtig ist es, den Zustand der Produktionslinien zu überwachen. Das Erkennen und die Vorhersage potenzieller Ausfallzeiten – egal welcher Art – kann die Betriebszeit und damit die Gesamtproduktivität erheblich steigern.

Künstliche Intelligenz kann - unabhängig von der Firmengröße - die Betriebszeit und damit die Gesamtproduktivität bei Fertigungsunternehmen erheblich steigern.
Künstliche Intelligenz kann – unabhängig von der Firmengröße – die Betriebszeit und damit die Gesamtproduktivität bei Fertigungsunternehmen erheblich steigern.Bild: Red Hat GmbH

Produktionsleiter achten bei der Systemauswahl auf… ?

Der erste Schritt sollte darin bestehen, nach Systemen zu suchen, die in identischen oder ähnlichen Anwendungsfällen erfolgreich zum Einsatz kamen. Als nächstes würde ich empfehlen, einen Partner oder Systemintegrator zu suchen, der Produktivitätsprobleme mit KI angeht. Wie üblich können Technologie und KI allein keine Probleme lösen – ein solides Verständnis des Unternehmens, dessen Ziele und des konkreten Anwendungsfalls sind unabdingbare Voraussetzung. Daher würde ich raten, die Suche nach einem Partner zu priorisieren, bevor überhaupt ein bestimmtes System oder eine bestimmte Technologie in Betracht gezogen wird.

Woran scheitern KI-Projekte?

Das liegt an zwei kritischen Faktoren. Ein Punkt ist die fehlende oder unzureichende Qualität der Daten für das Training der KI-Modelle: Beim ‚Supervised AI/ML Learning‘ ist die Verfügbarkeit von Trainings-, Test- und Validierungsdaten von hoher Qualität für das Anlernen robuster KI-Modelle entscheidend. Wer diesen Aspekt unterschätzt, riskiert das Scheitern seines KI-Projekts. Der andere maßgebliche Punkt ist der Einsatz von KI-Modellen in der Produktion: Während das Training von KI-Modellen in einer Data-Science- oder Laborumgebung gängige Praxis und relativ einfach ist, stellt die Nutzung dieser Modelle in Fertigungsbetrieben eine erhebliche Herausforderung dar. Dies liegt daran, dass die Modelle ständig überwacht werden müssen, um mögliche Verzerrungen oder einen ‚AI Model Drift‘ zu erkennen. Letzteres bezeichnet das Phänomen, dass die Vorhersagegenauigkeit von Machine-Learning-Modellen im Laufe der Zeit nachlassen kann. Um den Erfolg von KI-Projekten zu gewährleisten, muss also der gesamte Lebenszyklus sorgfältig durchdacht werden.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Weitere Beiträge

Bild: Prathan chorruangsak/Machineering/Baumüller Nürnberg GmbH
Bild: Prathan chorruangsak/Machineering/Baumüller Nürnberg GmbH
Komplette Maschinensimulation mit Baumüller

Komplette Maschinensimulation mit Baumüller

Die Kombination von Antriebs- mit Prozesssimulation ermöglicht es, die volle Bandbreite des digitalen Zwillings auszunutzen. Wie das aussehen kann zeigt Baumüller. Das Unternehmen hat seine Servoantriebe in die Datenbank von Machineering integriert, sodass das Verhalten kompletter Anlagen mit Baumüller Antriebstechnik in der Simulationsumgebung iPhysics abgebildet werden kann.

mehr lesen
Bild: Automation24 GmbH
Bild: Automation24 GmbH
Direkt im 
passenden
Maß bestellen

Direkt im passenden Maß bestellen

Um den stetig wachsenden und sich ändernden Sicherheitsauflagen bei modernen Produktionsanlagen gerecht zu werden, baut Automation24 sein Angebot an Safety aus. So sorgen die Sicherheitsschaltleisten und -bumper vom Hersteller Aso Safety Solutions für ein sicheres Stoppen von Systemen und für die Sicherung an Quetsch- und Scherkanten. Beide Komponenten sind im Online-Shop konfigurierbar und lassen sich auf die werkseigenen Bedingungen anpassen. Neben diesem Service steht Kunden online ein individueller Beratungsservice zur
Verfügung sowie nützliche Informationen in der Wissensecke.

mehr lesen