Entwicklung optischer Qualitätsprüfung mit KI beschleunigen
Wochen statt Monate
Einer der großen Kostenfaktoren in der Automatisierung optischer Qualitätssicherung ist die Entwicklungszeit. Diese verursacht hohe Entwicklungskosten und erhöht damit das Projektrisiko. Mit Deep Learning lässt sich dieser Prozess beschleunigen.
Die Deep-Learning-Software AI.See ist auf Fehlererkennung spezialisiert und bietet zusätzlich die Möglichkeit zur Verwendung von vortrainierten Modellen. Dadurch ermöglicht die Software hohe Erkennungsraten bereits mit wenigen Fehlerbildern.
Die Deep-Learning-Software AI.See ist auf Fehlererkennung spezialisiert und bietet zusätzlich die Möglichkeit zur Verwendung von vortrainierten Modellen. Dadurch ermöglicht die Software hohe Erkennungsraten bereits mit wenigen Fehlerbildern.Bild: Elunic AG

Die Entwicklung eines Systems für die optische Qualitätssicherung nimmt immer Zeit in Anspruch. Die Einrichtung der Hardware muss zwar produktspezifische Eigenschaften und individuelle Rahmenbedingungen vor Ort berücksichtigen, ist in der Regel aber gut und vergleichsweise schnell realisierbar. Im Gegensatz dazu erfordern Konfiguration und Programmierung der Software für die zuverlässige Fehlerfindung deutlich mehr Zeit. Hier eröffnet Deep Learning die Möglichkeit, Entwicklungszeiten stark zu reduzieren. Den Schlüssel dafür stellen Selbstlernmechanismen dar. Sie ersetzen die Programmierung der klassischen Bildverarbeitung. Die Computer Vision basiert auf Regeln, die für jedes Prüfobjekt neu entwickelt werden. Die Erkennungsmuster für die Unterscheidung gut/schlecht werden dabei einzeln programmiert. Diese Methode hat aber zwei Nachteile: Sie funktioniert nur wirklich gut, wenn sich gut/schlecht deutlich unterscheiden und die Entwicklung dauert lange, d.h. sie kann durchaus sechs Monate oder länger in Anspruch nehmen. Ein Einflussfaktor für die Entwicklungszeit ist die leichte oder schwere Erkennbarkeit der Fehler. Ein anderer ist die geforderte Erkennungssicherheit. Wenn 98 Prozent Sicherheit genügen, ist die Entwicklung eher abgeschlossen, als wenn das Nichterkennen von Fehlern (False Negative) unbedingt verhindert werden soll.

 Fehlererkennung in der Produktion mit Hilfe von AI.See.
Fehlererkennung in der Produktion mit Hilfe von AI.See.Bild: Elunic AG

Entwicklungszeiten können teuer werden

Neue Perspektiven bietet die optische Qualitätssicherung mit Deep Learning, da die Algorithmen in der Regel zu deutlich reduzierten Entwicklungszeiten führen. Das wird möglich, indem das Kodieren jedes einzelnen Fehlers durch das Einlernen mit Fehlerbildern ersetzt wird. Hierbei wird die Fähigkeit von neuronalen Netzen genutzt, sich an die Prüfobjekte zu adaptieren und damit selbsttätig zu lernen. Das Trainieren der Gut/Schlecht-Unterscheidung beginnt bei Deep Learning immer mit Bildern der Prüfobjekte. Oft sind diese bereits vorhanden, da zuvor Bildverarbeitung im Prozess durchgeführt wurde. Ansonsten müssen zuerst Bilder von fehlerhaften und fehlerfreien Teilen produziert werden. In der Regel benötigt Deep Learning eine vierstellige Anzahl von Bildern. Bei den meisten Deep-Learning-Anwendungen werden bei Bildern von fehlerhaften Teilen die Mängel im Bild markiert. Durch diese sogenannte Annotation lernt das Deep-Learning-Modell, wo das Prüfobjekt fehlerhaft ist. Die Anzahl der Bilder lässt sich einfach steigern, indem annotierte Bilder gedreht oder gespiegelt werden (Augmentation). Dadurch entstehen für die Software neue Prüfaufgaben, auch wenn das zugrundeliegende Motiv gleich ist. Ein ebenfalls wichtiger Teil der Vorbereitung ist die Bestimmung der Hyperparameter, d.h. Basiswerte zur Steuerung des Lernalgorithmus. Mit denen stellen KI-Experten das Lernmodell auf die jeweilige Prüfaufgabe ein. Diese Phase dauert oft etwa vier Wochen, abhängig unter anderem von der Verfügbarkeit von Bildmaterial. Sind Lernmodell und Hyperparameter bestimmt, beginnt die Erprobung der Software im realen Prozess. Die Entwickler testen das neue Lernmodell in der Produktion auf Gut/Schlecht-Erkennung. Danach wird das Ergebnis ausgewertet, das Modell verbessert und ein neuer Test durchgeführt. Dieser Zyklus wird so lange wiederholt, bis die Erkennungsrate für die Qualitätsverantwortlichen zufriedenstellend ist. Die grundlegende Entwicklung eines solchen Lernmodells dauert etwa vier Wochen. Daran schließt sich die meist mehrwöchige Testphase an.

Stark verkürzte Entwicklungszeit

Schneller geht die Entwicklung mit der Deep-Learning-Software AI.See der Münchner Firma Elunic. Der Anbieter setzt gleich an mehreren Punkten an, um mit der Software die Entwicklungszeit zu reduzieren. AI.See ist auf Fehlererkennung spezialisiert. Deswegen sind die mitgelieferten Modelle leichter auf typische Aufgaben der Qualitätssicherung zu trainieren als generische Modelle. Zusätzlich bietet sich die Möglichkeit zur Verwendung von Modellen, die bereits an ähnlichen Aufgaben eingelernt wurden (pre-trained). Schließlich sehen Kratzer oder Lunker auf ähnlichen Oberflächen meist auch ähnlich aus. Dadurch ermöglicht die Software bereits hohe Erkennungsraten mit weniger Fehlerbildern als vergleichbare Lösungen und beginnt daher das Einlernen schon mit einem zeitlichen Vorsprung. Einen weiteren Zeitvorteil gewinnt die Software durch das automatische Setzen der bestmöglichen Hyperparameter, denn diese werden nicht von Experten ausgewählt und erprobt. Die Software rechnet Kombinationen von Hyperparametern durch, die sich zuvor bei ähnlichen Projekten bewährt haben. Das beste Ergebnis bestimmt sie anhand der zuvor eingelesenen Bilder. Die Augmentation führt die Software ebenfalls automatisch durch. Diese umfangreiche Automatisierung ist möglich durch die Verwendung einer leistungsfähiger, auf Deep Learning ausgelegter Hardware. Im Ergebnis schrumpft damit die Dauer der Konfiguration des Lernmodells von Wochen auf Tage. AI.See kommt so mit vergleichsweise wenig Bildern aus, da es sich mit seinen spezialisierten Modellen schnell auf typische Erkennungsaufgaben einstellen kann. In einfachen Fällen genügen schon ein paar Hundert.

Praktische Anwendung

nach einer Woche

Seiten: 1 2Auf einer Seite lesen

Anzeige

Das könnte Sie auch Interessieren

Weitere Beiträge

Bild: ISW Institut für Steuerungstechnik der
Bild: ISW Institut für Steuerungstechnik der
Computer Vision 
in der Steuerung

Computer Vision in der Steuerung

Der Ruf nach intelligenten Lösungen für die Produktionstechnik wird immer größer. Bauteile sollen automatisch erkannt und individuell verarbeitet werden. Dabei spielt Computer Vision eine entscheidende Rolle, jedoch fehlt es noch an Lösungen zur steuerungsnahen Ausführung. Wegen der komplexen Rechenvorgänge ist die Ausführung intelligenter Vision-Algorithmen in einer konventionellen Steuerung meist nicht in Echtzeit möglich. Die Lösung? Eine hardwarebeschleunigte Soft-SPS.

mehr lesen
Bild: KEB Automation KG
Bild: KEB Automation KG
Mehr als Daten sammeln

Mehr als Daten sammeln

In der Industrie stehen Schlagworte wie Digitalisierung, Industrial Internet of Things (IIoT) und künstliche
Intelligenz (KI) seit langem für die Möglichkeit, Produktionsabläufe und Wartungsmodelle auf der Basis von Daten zu optimieren. Dadurch ergeben sich für Maschinen- und Komponentenhersteller gleichermaßen Chancen, ihren Kunden neue Angebote für digitale, datenbasierte Services zu machen.

mehr lesen
Bild: Microsonic GmbH
Bild: Microsonic GmbH
Kompakt und 
widerstandsfähig

Kompakt und widerstandsfähig

Mit zunehmender Automatisierung ist durchgängige Prozess- und Qualitätskontrolle unverzichtbar. Sensoren überwachen Abläufe, kontrollieren Füllstände,
zählen Objekte und vieles mehr – so regeln sie
beispielsweise den Materialfluss und überwachen
Lagerbestände. Ultraschallsensoren sind dabei nicht mehr wegzudenken, denn sie liefern digitale Daten
für eine bessere Überwachung und Steuerung von
industriellen Fertigungsprozessen.

mehr lesen
Bild: Emerson Process Management GmbH & Co. OHG
Bild: Emerson Process Management GmbH & Co. OHG
Daten auf der Hand

Daten auf der Hand

Emerson hat mit dem TankMaster Mobile eine plattformübergreifende Bestandsmanagement-Software für Tankmesssysteme veröffentlicht, die einen sicheren Zugang zu wichtigen Tankdaten bietet. Durch die Bereitstellung von Echtzeitdaten für berechtigte Personen auf Smartphones, Tablets oder Computern erleichtert die mobile
Lösung die Entscheidungsfindung und optimiert Abläufe.

mehr lesen

Anzeige

Anzeige

Anzeige